20 research outputs found

    A Lifting Theorem with Applications to Symmetric Functions

    Get PDF

    Approximate Degree, Secret Sharing, and Concentration Phenomena

    Get PDF
    The epsilon-approximate degree deg~_epsilon(f) of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg~_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d deg~_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND

    On Parity Decision Trees for Fourier-Sparse Boolean Functions

    Get PDF
    We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let f : ??? ? {-1, 1} be a Boolean function with Fourier support ? and Fourier sparsity k. - We prove via the probabilistic method that there exists a parity decision tree of depth O(?k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. - We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural "folding property", then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(? k). More concretely, the folding property we consider is that for most distinct ?, ? in ?, there are at least a polynomial (in k) number of pairs (?, ?) of parities in ? such that ?+? = ?+?. We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). - Motivated by the above, we present some structural results about the Fourier spectra of Boolean functions. It can be shown by elementary techniques that for any Boolean function f and all (?, ?) in binom(?,2), there exists another pair (?, ?) in binom(?,2) such that ? + ? = ? + ?. One can view this as a "trivial" folding property that all Boolean functions satisfy. Prior to our work, it was conceivable that for all (?, ?) ? binom(?,2), there exists exactly one other pair (?, ?) ? binom(?,2) with ? + ? = ? + ?. We show, among other results, that there must exist several ? ? ??? such that there are at least three pairs of parities (??, ??) ? binom(?,2) with ??+?? = ?. This, in particular, rules out the possibility stated earlier

    Tight Bounds for Quantum Phase Estimation and Related Problems

    Get PDF

    Randomized and quantum query complexities of finding a king in a tournament

    Full text link
    A tournament is a complete directed graph. It is well known that every tournament contains at least one vertex v such that every other vertex is reachable from v by a path of length at most 2. All such vertices v are called *kings* of the underlying tournament. Despite active recent research in the area, the best-known upper and lower bounds on the deterministic query complexity (with query access to directions of edges) of finding a king in a tournament on n vertices are from over 20 years ago, and the bounds do not match: the best-known lower bound is Omega(n^{4/3}) and the best-known upper bound is O(n^{3/2}) [Shen, Sheng, Wu, SICOMP'03]. Our contribution is to show essentially *tight* bounds (up to logarithmic factors) of Theta(n) and Theta(sqrt{n}) in the *randomized* and *quantum* query models, respectively. We also study the randomized and quantum query complexities of finding a maximum out-degree vertex in a tournament

    Improved Approximate Degree Bounds for k-Distinctness

    Get PDF
    An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the k-distinctness function on inputs of size N. While the case of k=2 (also called Element Distinctness) is well-understood, there is a polynomial gap between the known upper and lower bounds for all constants k>2. Specifically, the best known upper bound is O (N^{(3/4)-1/(2^{k+2}-4)}) (Belovs, FOCS 2012), while the best known lower bound for k? 2 is ??(N^{2/3} + N^{(3/4)-1/(2k)}) (Aaronson and Shi, J. ACM 2004; Bun, Kothari, and Thaler, STOC 2018). For any constant k ? 4, we improve the lower bound to ??(N^{(3/4)-1/(4k)}). This yields, for example, the first proof that 4-distinctness is strictly harder than Element Distinctness. Our lower bound applies more generally to approximate degree. As a secondary result, we give a simple construction of an approximating polynomial of degree O?(N^{3/4}) that applies whenever k ? polylog(N)

    Instance complexity of Boolean functions

    Full text link
    In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant

    Sign-Rank Can Increase Under Intersection

    Get PDF
    The communication class UPP^{cc} is a communication analog of the Turing Machine complexity class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f, let f wedge f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP^{cc}(f)= O(log n), and UPP^{cc}(f wedge f) = Theta(log^2 n). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP^{cc}, the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n^{Omega(log n)}. This matches an upper bound of (Klivans, O\u27Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time
    corecore